Simulation-Based Bronchoscopy Training

Jack A. Kastelik, MD; Faiza Chowdhury, MBChB; Anthony Arnold, MD
Chest. 2013;144(2):718-719. doi:10.1378/chest.13-0880
We read with great interest an article by Kennedy and colleagues1 in a recent issue of CHEST (July 2013) in which a systematic review and meta-analysis of studies revealed significant improvements in skills and behaviors when comparing simulation-based bronchoscopy with no intervention. However, the article also identified gaps in evidence, such as the lack of clear understanding of optimal design or choice of modalities in relation to simulation-based bronchoscopy training. Based on our experience of setting up a regional simulation bronchoscopy program, we are able to address these issues.
We established five clinical skills laboratories that deliver simulation bronchoscopy training. We also set up a group of regional experienced bronchoscopists responsible for the development of simulation bronchoscopy training. We have run 15 courses and trained >60 candidates. Although initially we used different formats for the courses, the trainees’ overall experience of simulation-based bronchoscopy was extremely positive. Based on our initial experience, we established that the optimal design for delivering simulation-based bronchoscopy courses should incorporate a blend of short lectures, e-learning, and hands-on experience using simulation. To be successful, simulation-based bronchoscopy requires a high trainer-to-trainee ratio (ideally 1:2), and, therefore, we established a faculty of experienced bronchoscopists with a special interest in procedural training. Our results confirmed significant improvement, for both novices and more experienced trainees, in the technical ability of handling bronchoscopes, their understanding of anatomy and identification of bronchial segments, and their knowledge of the procedure; the improvements were in the range of 20% and 30% when using high fidelity alone and in combination with low-fidelity bronchoscopy simulation, respectively.2 We observed that the best outcomes were achieved by combining sessions on a virtual reality bronchoscopy simulator with low-fidelity manikin and real scope modules. Our real-life experience showed that it is possible to set up a large and successful regional simulation bronchoscopy training program, which is now offered to all of our trainees (before exposure to patients).
Training in bronchoscopy is a complex process and has been traditionally based on an apprenticeship model, which raised concerns of patient safety and variable level of experience, with reports suggesting that one-fifth of trainees may not be achieving the required number of procedures.3 Although simulation-based bronchoscopy can overcome many of these issues, it has only been incorporated into 36% programs in the United States.4 The article by Kennedy and colleagues1 and our experience, therefore, provide important evidence to encourage wider use of simulation for bronchoscopy training.
1. Kennedy CC, Maldonado F, Cook DA Simulation-based bronchoscopy training; systematic review and meta-analysis. Chest. 2013;144(1):183-192.
2. Chowdhury F, Gondker A, Acharya N, et al. Standardisation of bronchoscopy training across Yorkshire and Humber Deanery [abstract]. Thorax. 2012;67(suppl 2):A171. [CrossRef]
3. Pastis NJ, Nietert PJ, Silvestri GA; American College of Chest Physicians Interventional Chest/Diagnostic Procedures Network Steering Committee. Variation in training for interventional pulmonary procedures among US pulmonary/critical care fellowships: a survey of fellowship directors. Chest. 2005;127(5):1614-1621. [CrossRef]
4. Lucarelli MR, Lucey CR, Mastronarde JG. Survey of current practices in fellowship orientation. Respiration. 2007;74(4):382-386.